
WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #5 due 11/20/2015

Problem 1. Consider the Neumann problem for the Laplacian in the 3-dimensional unit
ball, that is the boundary value problem

∆u = f in B(0, 1) ,
∂u

∂n
= g in Sd−1

Here B(0, 1) = {x ∈ R3 : |x| < 1} and S2 = ∂B(0, 1) = {x ∈ R3 : |x| = 1}, and n is
the exterior unit norm vector of B(0, 1) on S2.

a.) Show that B(0, 1) has a C∞ boundary.

Solution. Choose x = (0, 0, 1) and set ϕ(x) = (x1, x2, 1− |x|) where |x| =
√
x21 + x22 + x23.

This function is well defined for all x ∈ B(0, 1) and it is of class C∞ for all x ∈ Rd \ {0}.
Also, for |x| = 1 that is x ∈ S2 = ∂B(0, 1), we have y3 = 1− |x| = 0 and for 0 < |x| < 1,
that is x ∈ B(0, 1)\{0} we have y3 > 0. Let U = U (x) = {x ∈ Rd : |x−(0, 0, 1)| < 1/4}.
Hence we have verified that ϕ ∈ C∞(U ) and that

ϕ(U ∩B(0, 1)) ⊂ {y ∈ R3 : y3 > 0} and ϕ(U ∩ S2) ⊂ {y ∈ R3 : y3 = 0} .

However, one still needs to verify that ϕ is invertible in U . We have y3 = 1− |x|, which

because of y1 = x1 and y2 − x2 gives y3 = 1−
√

1− y21 − y22 − x23. Solving for x3 yields

x3 =
√

(1− y3)2 − y21 − y22 and thus ϕ−1(y) =

(
y1, y2,

√
(1− y3)2 − y21 − y22

)
.

Ideally, one needs to show that ϕ−1 ∈ C∞(ϕ(U )). However, the actual computation of
ϕ(U ) is tedious and can be avoided since

ϕ(U ) ⊂ {y ∈ R3 : y21 + y22 ≤ 1/16 and |y3| ≤ 1/4} .
This follows from the definition of the set U . One sees that x ∈ U implies y21 +y22 < 1/16
and 3/4 < |x < 5/4 which results in |y3| < 1/4. The function ϕ−1 is well defined and
smooth on this set. A similar construction can be performed in every fixed point x ∈ S2

alternative solution. Certainly, there are other ways to solve this problem. Choosing
x = (1, 0, 0), set

x1 = (1− y3) sin y2 cos y1 , x2 = (1− y3) sin y2 sin y1 , x3 = (1− y3) cos y2

These are pretty much the defining equations of the spherical coordinates with the two
angles being denoted by y1 and y2 and y3 = 1 − r with r = |x|. One observes that we
actually define the function ϕ−1. However, the function ϕ can be found and is given by

y1 = cos−1
x3
|x|
, y2 = tan−1

x2
x1
, y3 = 1− |x| .

One notes that the function ϕ is smooth on its domain whereas the function ϕ−1 ∈
C∞(R3). Choosing U = U (x) small enough guarantees ϕ ∈ C∞(U ) and ϕ−1(ϕ(U )). A
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similar construction can be given in every point of the unit sphere.

b.) For a given neighborhood of U (x) with x ∈ S2 and a coordinate mapping ϕ ∈ C∞(U )
found in part a.), give an explicit transformation of this boundary value problem to the
half space.

Solution. We will transform the boundary value problem to the half space using the
function ϕ and the neighborhood U introduced in the first part of the problem. Given
a (scalar-valued) function u supported in U , set v = u ◦ ϕ−1, that is v ◦ ϕ = u. By the
chain rule Dxu = DyvDxϕ where the symbol D refers to the derivative, that is Dxu is the
gradient of u written as a row vector, Dyv is the gradient of v (again a row vector) and
Dxϕ is the Jacobian matrix of ϕ that is

Dxϕ =

 1 0 0
0 1 0
x1
|x|

x2
|x|

x3
|x|

 .

Changing to column vectors we can write∇xu = [Dxϕ]T∇yu, or more precisely,

∇xu(ϕ−1(y)) = [Dxϕ(ϕ−1(y))]T∇yu(y)

and hence

∆xu(ϕ−1(y)) = ∇x · [∇xu(ϕ−1(y))] = [Dxϕ(ϕ−1(y))]T∇y] · [Dxϕ(ϕ−1(y))]T∇yu(y) .

This expression is not easily computed. However, since

Dxϕ(ϕ−1(y))T =

1 0 y1
1−y3

0 1 y2
1−y3

0 0

√
(1−y3)2−y21−y22

1−y3

 ,

one observes that the principal part of ∆xu(ϕ−1(y)) is of the form

(1)
3∑

j,k=1

ajk(y)
∂2

∂yj∂yk

with a real symmetric coefficient matrix ajk(y) = [Dxϕ(ϕ−1(y))Dxϕ(ϕ−1(y))T ]jk. Since
ϕ is a coordinate transform, the matrix ajk(y) is uniformly positive definite on ϕ(U ).
Hence, the transformed operator is again elliptic, albeit with variable coefficients.

It remains to transform the boundary condition. Recall from the lecture that

n(x) =
[Dϕ(x)]T e3
|[Dϕ(x)]T e3|

where e3 = (0, 0, 1) is the third standard basis vector. Then for y ∈ ϕ(U ∩ S2)

∂u

∂n
(ϕ−1(y)) = n(ϕ−1(y)) · ∇xu(ϕ−1(y)) =

[Dϕ(ϕ−1(y))]T e3
|[Dϕ(ϕ−1(y))]T e3|

· [Dxϕ(ϕ−1(y))]T∇yv(y)

=
1

|[Dϕ(ϕ−1(y))]T e3|

3∑
j=1

e3a3k(y)
∂v

∂yk
(y) .

which shows that the Neumann boundary condition for the Laplace operator transfers
- up to a factor - into the Neumann condition for the second-order operator (2). The
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expression

3∑
j=1

e3a3k(y)
∂v

∂yk
(y)

is known as co-normal derivative.

Alternative solution. If one uses spherical coordinates to straighten the boundary (alter-
native solution to Problem 1), then one obtains the Laplacian in spherical coordinates on
the half space.

Problem 2. Consider the stationary isotropic system of elasticity with constant coeffi-
cients in the half space, that is 3× 3 system of second order

µ∆u+ (λ+ µ)∇∇ · u = f in R3
+ ,

where u and f are vector valued functions with 3 components each and λ and µ are real
constants, called Lamé parameters.

a.) Under which conditions on µ and λ is this system elliptic ?

Solution. The (principal) symbol of the operator is the matrix

P2(ξ) =

(µ+ λ)ξ21 + µ|ξ|2 (µ+ λ)ξ1ξ2 (µ+ λ)ξ1ξ3
(µ+ λ)ξ1ξ2 (µ+ λ)ξ22 + µ|ξ|2 (µ+ λ)ξ2ξ3
(µ+ λ)ξ1ξ3 (µ+ λ)ξ2ξ3 (µ+ λ)ξ23 + µ|ξ|2

 ξ3
and the determinant is equal to [µ|ξ|2]2(2µ+ λ)|ξ|2. Hence, the system is elliptic as long
as µ 6= 0 and 2µ+ λ 6= 0.

b.) Reduce this system to a first order system of the form ∂v/∂y −K(Dx)v = F .

Solution. Start writing the symbol as a matrix polynomial in ξ3, that is

P2(ξ) =

µ 0 0
0 µ 0
0 0 2µ+ λ

 ξ23 +

 0 0 (µ+ λ)ξ1
0 0 (µ+ λ)ξ2

(µ+ λ)ξ1 (µ+ λ)ξ2 0

 ξ3
+

(µ+ λ)ξ21 + µ[ξ21 + ξ22 ] (µ+ λ)ξ1ξ2 0
(µ+ λ)ξ1ξ2 (µ+ λ)ξ22 + µ[ξ21 + ξ22 ] 0

0 0 µ[ξ21 + ξ22 ]

 .

Hence, multiplying the principal symbol with

−A−12 = −

µ 0 0
0 µ 0
0 0 2µ+ λ

−1

results in

A−12 P2(D) =
∂2

∂y
+ A1(ξ1, ξ2)

∂

∂y
+ A0(ξ1, ξ2)
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where y = x3 with

A1(ξ1, ξ2) = iA−12

 0 0 (µ+ λ)ξ1
0 0 (µ+ λ)ξ2

(µ+ λ)ξ1 (µ+ λ)ξ2 0

 ,

A0(ξ1, ξ2) = −A−12

(µ+ λ)ξ21 + µ[ξ21 + ξ22 ] (µ+ λ)ξ1ξ2 0
(µ+ λ)ξ1ξ2 (µ+ λ)ξ22 + µ[ξ21 + ξ22 ] 0

0 0 µ[ξ21 + ξ22 ]

 .

Finally, with vI = Λu and vII = ∂u/∂y. Here, with a slight change of notation compared

to the lecture notes Λ̂u(ξ) =
√

1 + ξ21 + ξ22 û(ξ) and hence, the 3 × 3 system of second
order becomes a 6× 6 system of first order of the form

∂v

∂y
−K(Dx1 , Dx2)v = F

with

K(ξ1, ξ2) =

[
0 ΛI3

A0Λ
−1 A1

]
and F =

[
0
f

]
.

c.) Reduce the boundary condition [∇u]sn = g on ∂R3
+ = R2 to a boundary condition

of order zero for the function v introduced in problem a.). Here n = −e3 is the exterior
unit normal vector (which coincides with the opposite of the last standard basis vector in
R3) and [∇u]s is the ’symmetric gradient’ of u, that is [∇u]s = [∇u +∇uT ]/2. (It may
be better to call this expression the symmetric Jacobian since ∇u is the Jacobian matrix
of u.)

Solution. Compute

∇su =
1

2

 2∂1u1 ∂1u2 + ∂2u1 ∂1u3 + ∂3u1
∂1u2 + ∂2u1 2∂2u2 ∂3u2 + ∂2u3
∂1u3 + ∂3u1 ∂3u2 + ∂2u3 2∂3u3


and

[∇u]sn =
1

2

∂1u3 + ∂3u1
∂3u2 + ∂2u3

2∂3u3

 = g which gives
∂u

∂y
+

∂1u3∂2u3
0

 =

2g1
2g2
g3


With the function v defined as above we have

vII +

0 0 ∂1Λ
−1

0 0 ∂2Λ
−1

0 0 0

 vI =

2g1
2g2
g3

 .

Note that this boundary condition can be written as a 3× 6 matrix acting on the vector
v which has 6 components.

Problem 3. The Sobolev space H(k,s)(Rd). For a distribution u ∈ S ′(Rd), k and s ∈ R,
one defines the norm

‖u‖2(k,s) =

∫ ∞
−∞

∫
Rd−1

|û(ξ, η)|2(1 + |ξ|2 + |η|2)k〈ξ〉2sdξdη
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where ξ = (ξ1, ..., ξd−1), 〈ξ′〉 =
√

1 + |ξ′|2, η ∈ R, and û is the Fourier transform of u with
respect to all d variables. Then one introduces the Sobolev space H(k,s)(Rd) as the set

{u ∈ S ′(Rd) : ‖u‖(k,s) <∞} .
Show that for k > 1/2 there exists a linear continuous operator T from H(k,s)(Rd) into

Hk+s−1/2(Rd−1) such that
(Tu)(x) = u(x, 0) for all u ∈ C∞0 (Rd).

Proof. Using a density argument, it will suffice show that there exists a constant C which
may depend on k and s such that

|u(x, 0)|Hk+s−1/2 ≤ C‖u‖(k,s)
for all u ∈ C∞0 (Rd).

Set f(x) = u(x, 0) and let û(ξ, η) be the Fourier transform of u. Then

f(x) =
1

(2π)d/2

∫
Rd

û(ξ, η)eix·ξdξdη =
1

(2π)(d−1)/2

∫
Rd−1

eix·ξ
[

1√
2π

∫
R
û(ξ, η)dη

]
dξ

which after Fourier transform only in the tangential variables results in

f̂(ξ) =
1√
2π

∫
R
û(ξ, η)dη .

Then, using the Cauchy-Schwarz inequality

(2) |f(ξ)|2 ≤
∫
R
|û(ξ, η)|2(1 + |ξ|2 + η2)kdη

∫
R
(1 + |ξ|2 + η2)−kdη

where the last integral is convergent of k > 1/2. More precisely, with the substitution
ζ = η/〈ξ〉 one obtains∫

R
(1 + |ξ|2 + η2)−kdη = 〈ξ〉−2k+1

∫
R
(1 + ζ2)−kdζ = C(k)〈ξ〉1−2k .

After multiplying (2) by 〈ξ〉2k+2s−1 and integrating over Rd−1 one obtains∫
Rd−1

〈ξ〉2k+2s−1|f(ξ)|2 ≤ C(k)

∫
Rd

|û(ξ, η)|2(1 + |ξ|2 + η2)k〈ξ〉2sdξdη .

�


